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1 Basic formulation and notation
This describes the basic OG model used by Auerbach and Kotlikoff [1].

1. There are N members of each generation, and they are identical—the representative
agent hypothesis. Each works when young, saves, and lives off his or her savings when
old.

2. At the beginning of period t, there is a capital stock Kt, which is owned by the older
generation (generation t − 1), that is used with an amount of labor Lt supplied by the
young of period t to produce and additional increment Yt of good by the end of the period.
This means that at the end of period t the total amount available for consumption and
investment is Yt + Kt.

3. Workers of generation t work 1 period at real wage wt. They save an amount at+1, which
earns the real rate of return rt+1.

4. National output Y is produced according to the production function

Yt = F (Kt, Lt)

which exhibits constant returns to scale. Because of constant returns to scale, the economy
acts as if it is maximizing the aggregate real profit

F (Kr, Lt) − wLt − ρtKt,

where ρt is the rental rate of capital, that is, what must be paid to the owners of capital.
Also because of constant returns to scale, the marginal product of capital and of labor,
and the output per worker, depend only the capital/labor ratio

kt = Kt

Lt
.

Indeed
Yt

Lt
= F

(
Kt

Lt
,
Lt

Lt

)
= F (kt, 1) = f(kt),

where the last equality is taken as the definition of f .
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Also from f(K/L) = F (K/L, 1), fixing L and differentiating with respect to K implies

f ′(K/L)
L

= D1F (K/L, 1)
L

, so f ′(k) = D1F (k, 1) = D1F (K, L),

where the last equality follows from Euler’s Theorem (partial derivatives are homogeneous
of degree zero).

5. Workers are fully employed,
Lt = N.

6. Wages and interest rates in each period adjust to equate the supply and demand of capital
and labor.

2 Consumer/workers
Consumer/workers have a utility function for ranking lifetime consumption plans,

u(cy, co),

where cy is consumption when young, and co is consumption when old. Workers earn wage
income wy when young and wo when old. Thus their budget constraint is

cy = wy − a, and co = wo + (1 + r)a,

where a is their saving and r is the real rate of interest. Solving the second constraint for
a and substituting into the first gives the equivalent single lifetime budget constraint:

cy + co

1 + r
= wy + wo

1 + r

or
present value of consumption = present value of income.

Consumer/workers maximize their utility subject to the budget constraint. That is, they
choose cy and co to

maximize
cy ,co

u(cy, co) subject to cy + co

1 + r
= wy + wo

1 + r
.

An equivalent, and perhaps more useful reformulation is that they choose their saving a to

maximize
a

u(wy − a, wo + (1 + r)a).

The solution to this problem clearly depends on wy, wo, and the real interest rate r. The
solution is known as the saving function, and we shall denote it by

a(r; wy, wo),

so with time subscripts
at+1 = a(rt+1; wt, wt+1).
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2.1 Cobb–Douglas case
We now solve the consumer/worker’s problem for the case

u(cy, co) = cα
y c1−α

o ,

and
wo = 0.

The Lagrangean for this problem is

cα
y c1−α

o + λ(wy − cy − co

1 + r
).

The first order conditions for a maximum at (cy, co, a) are that its partial derivatives are zero,
or

αcy
α−1co

1−α − λ = 0

(1 − α)cy
αco

−α − 1
1 + r

λ = 0.

Combined with the budget constraint, this implies

cy = αwy

a = (1 − α)wy

co = (1 + r)(1 − α)wy.

In terms of the time subscript convention, the key result is the saving function satisfies

at+1 = a(rt+1; wt) = (1 − α)wt. (1)

Note that for this utility function, the individual saving function is independent of the real
interest rate! This will simplify the analysis of the model.

3 The production sector
As remarked above, the production sector acts as if it maximizes

F (K, L) − wL − ρK.

The first order conditions are that the partial derivatives of the profit with respect to K and
L are zero. Due to constant returns to scale, the maximum profit is zero, and the profit
maximizing output is indeterminate. However, the capital/labor ratio is determinate.
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3.1 The Cobb–Douglas case
The solution to the problem when

F (K, L) = AKβL1−β

is gotten by solving the first order conditions,

βAKβ−1L1−β − ρ = 0
(1 − β)AKβL−β − w = 0,

or in terms of the optimal capital/labor ratio k,

βAkβ−1 = ρ

(1 − β)Akβ = w.

These first order conditions allows to solve for k as

k = β

1 − β

w

ρ
.

So let us write the capital demand per worker function as

kt = k(ρt, wt) = β

1 − β

wt

ρt
. (2)

4 Some accounting
Now we get to the relation between ρt, the rental rate of capital at time t, and rt, the real rate
of interest between periods t − 1 and t; and the relation between at, the per capita saving by
the young of generation t − 1, and kt, the capital/labor ratio in period t. Here it is:

at = kt

rt = ρt.

(3)

That is, the capital stock per worker at time t, is exactly the savings per worker of time t − 1,
and the rental rate of capital is the real rate of interest.

Recall that by Euler’s Theorem, for any values of K and L, we have

F (K, L) = D1F (K, L)K + D2F (K, L)L,

and for the profit maximizing values K∗ and L∗ (which depend on ρ and w) we have

D1F (K∗, L∗) = ρ andD2F (K∗, L∗) = w.
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Thus
Y ∗ = F (K∗, L∗) = ρK∗ + wL∗.

Now wL∗ is the aggregate income of the young, and ρK∗ is the capital rental income of the old.
But the old also own the capital stock K∗, which they must either sell to the young at the end
of the period, after they have collected their rental fee, or consume it themselves. How much
can they get for it? Well, it is K∗ units of output, which is worth exactly K∗ units of output.

Thus on the income side, the young receive wL∗
t and the old receive ρK∗

t in rental income
and K∗

t from the sale of their capital. Thus total income is

wL∗ + ρK∗ + K∗ = Y ∗ + K∗.

But the real rate of interest rt between periods t − 1 and t is computed as follows. The young
at time t − 1 save a real amount Na∗

t , for which they pay Na∗
t units output, which they sell a

period later for Na∗
t = K∗

t and also receive ρtK
∗
t in rental income, so they get back (1 + ρt)K∗

t ,
which by the definition of real rate of interest is the return on their investment (1 + rt)K∗

t .
Thus

rt = ρt.

From now on, I will use r instead of ρ.

5 Equilibrium values of w and r

From (1) the saving of the workers, which is the supply of capital, is given by

at+1 = a(rt+1; wt) = (1 − α)wt,

and from (2), the demand for capital is given by

kt+1 = k(rt+1, wt+1) = β

1 − β

wt+1
rt+1

.

In equilibrium of supply and demand for capital, we must have a sequence of equilibrium wage
and real interest rates

⟨(r∗
t , w∗

t )⟩t=0,1,...

and
a(r∗

t+1; w∗
t ) = k(r∗

t+1, w∗
t+1)

or

(1 − α)w∗
t = β

1 − β

w∗
t+1

r∗
t+1

for all t. (4)

This is not very easy to interpret, but if we express the results directly in terms of the sequence
⟨k∗

t ⟩ we have the difference equation

k∗
t+1 = (1 − α)(1 − β)Ak∗

t
β. (5)
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6 The steady states
This difference equation has two steady states. A steady state is a value k̂ such that the
solution k∗

t = k̂ for all t solves (5). One (rather uninteresting steady state) is given by

k∗
t = 0 for all t.

The other steady state is given by

k∗
t = k̄ = [(1 − α)(1 − β)A]

1
1−β for all t.

This steady state has the property that for any initial condition k∗
0 > 0 the solution converges

relatively rapidly to k̄. (I am rapidly running out of ornaments for my letters.)
To see this, consult Figure 1.

7 Growth
Suppose now that the coefficient of total factor productivity A is growing over time at the rate
ζ, that is

At+1 = (1 + ζ)At,

and that population is growing at the rate η. That is,

Nt+1 = (1 + η)Nt.

The per capita production function now depends on the time period:

yt = (1 + ζ)tA0kβ
t .

Therefore, since the real wage is the marginal product labor, and the rate of return on capital
is the marginal product of capital we have

wt = (1 − β)(1 + ζ)tA0kβ
t

rt = β(1 + ζ)tA0kβ−1
t .

The budgets of consumers are straightforward:

cyt + at+1 = wt

cot+1 = (1 + rt+1)at+1,

so the lifetime budget constraint is

cyt + 1
1 + rt+1

cot+1 = wt.

This gives the demand function
cyt = αwt
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Figure 1. Convergence to the steady-state capital-labor ratio.
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so per capita saving at+1 is given by

at+1 = (1 − α)wt.

A significant difference is that since the population Nt+1 at time t + 1 is (1 + η)Nt. Therefore
the capital/labor ratio kt+1 at time t + 1 satisfies the transition equation

kt+1 = at+1
1 + η

= (1 − α)wt

1 + η

= (1 − α)(1 − β)(1 + ζ)tA0
1 + η

kβ
t .

(6)

Figure 2 shows some sample dynamics. It is clear that no steady state capital/labor ratio exists,
but it may not be immediately obvious that

kt+1
kt

−−−→
t→∞

(1 + ζ)1/(1−β). (⋆)

Before proving (⋆), let me make a couple of observations. The interesting thing about this
limit is what it does not depend on. The limiting rate of growth in kt is independent of the
initial capital/labor ratio, the rate of growth of population η, and also independent of the saving
rate 1 − α! It depends only on the technological parameters β, the share of capital, and ζ, the
rate of productivity growth. Note that the limiting growth rate is increasing in both ζ and β.

The other thing to note is that per capita income and the real wage also grow at the same
rate asymptotically:

yt+1
yt

= (1 + ζ)tA0kβ
t

(1 + ζ)tA0kβ
t

= (1 + ζ)
(

kt+1
kt

)β

−→ (1 + ζ)(1 + ζ)
β

1−β = (1 + ζ)
1

1−β ,

wt+1
wt

= (1 − β)(1 + ζ)tA0kβ
t

(1 − β)(1 + ζ)tA0kβ
t

= (1 + ζ)
(

kt+1
kt

)β

−→ (1 + ζ)(1 + ζ)
β

1−β = (1 + ζ)
1

1−β .

The rate of the return on capital, however, stabilizes:

rt+1
rt

= β(1 + ζ)tA0kβ−1
t

β(1 + ζ)tA0kβ−1
t

= (1 + ζ)
(

kt+1
kt

)β−1
−→ (1 + ζ)(1 + ζ)

β−1
1−β = 1.

To prove (⋆), from (6) we have

kt+1 = (1 − α)(1 − β)(1 + ζ)t−1A0
1 + η

kβ
t

kt = (1 − α)(1 − β)(1 + ζ)tA0
1 + η

kβ
t−1,
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Figure 2. Sample time path of kt. Note that in this case it is not monotonic.
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which implies
kt+1
kt

= (1 + ζ)
(

kt

kt−1

)β

.

Take logarithms and make the substitution

ut = ln
(

kt+1
kt

)
to get the difference equation

ut = ln(1 + ζ) + βut−1.

We can solve this by iterating:

ut = ln(1 + ζ) + βut−1

= ln(1 + ζ) + β
(
ln(1 + ζ) + βut−1

)
= (1 + β) ln(1 + ζ) + β2ut−1

= (1 + β) ln(1 + ζ) + β2(ln(1 + ζ) + βut−2
)

= (1 + β + β2) ln(1 + ζ) + β3ut−2
...

=
(

t∑
n=0

βn

)
ln(1 + ζ) + βt+1u0

−−−→
t→∞

ln(1 + ζ)
1 − β

.

(7)

Thus
ln
(

kt+1
kt

)
−−−→
t→∞

ln(1 + ζ)
1 − β

+ 0,

so exponentiating,
kt+1
kt

−−−→
t→∞

(1 + ζ)
1

1−β .

Note that the special value k∗
0 defined by

(1 + ζ)1/(1−β)k∗
0 = k1 = (1 − α)(1 − β)(1 + ζ)0A0

1 + η
k∗

0
β,

or

k∗
0 =

((1 − α)(1 − β)A0
1 + η

(1 + ζ)−1/(1−β)
)1/(1−β)

, (8)

then for each t we have
kt =

(
(1 + ζ)

1
1−β

)t
k∗

0,

so
kt+1
kt

= (1 + ζ)
1

1−β .

That is, each period grows at the limiting rate.
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Figure 3 shows how quickly the growth ratios kt+1/kt converge for different starting values
k0. The parameters are α = .8, β = .3, ζ = 0.348 (which corresponds to an annual rate
of .75% for a 40-year period), η = 0.489 (which corresponds to an annual rate of 1% for a
40-year period), A0 = 1, and initial capital/labor ratios of k0 = 0.01855 for the red dots,
k0 = 10 for the green dots, and k0 = .001 for the blue dots. For these values, the limiting
ratio is (1 + ζ)1/(1−β) = 1.53261. More interesting, (7) also implies that the capital/labor ratios
themselves converge, as is shown in Figure 4.
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Figure 3. Convergence of kt+1/kt for different initial values k0.
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Figure 4. Convergence of capital/labor ratios for different initial values k0.

However, do not think that saving rates and population growth rates do not matter. They
do not affect the asymptotic growth rate, but they do affect the levels of kt. Figure 5 shows
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the effect of decreasing the marginal propensity to consume (α) from .8 (red) to .7 (blue). A
decrease in the population growth rate has an effect in the same direction.
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Figure 5. Effect of change in α on levels of kt, but not growth rates.

As an aside, we can actually solve the difference equation for kt, or more easily, for ln kt.
From (6), we have

ln kt+1 =
[
ln(1 − α) + ln A0 + ln(1 − β) − ln(1 + η)

]
+ t ln(1 + ζ) + β ln kt,

which has the form
ut+1 = A + Bt + βut.
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Iterating as above, we get

ut+1 = A + Bt + βut

= A + Bt + β (A + B(t − 1) + βut−1)
= A(1 + β) + B

(
t + β(t − 1)

)
+ β2ut−1

= A(1 + β) + B
(
t + β(t − 1)

)
+ β2 (A + B(t − 2) + βut−2)

= A(1 + β + β2) + B
(
t + β(t − 1) + β2(t − 2)

)
+ β3ut−2

...

= A
t∑

n=0
βn + B

(
t∑

n=0
βn(t − n)

)
+ βt+1u0

= A
t∑

n=0
βn + Bt

t∑
n=0

βn − B
t∑

n=0
nβn + βt+1u0

= (A + Bt)
(

1 − βt+1

1 − β

)
− B

t∑
n=0

nβn + βt+1u0.

Now, you probably don’t know this off the top of your head, but maybe you have a Chemical
Rubber Company Handbook or access to Mathematica, or are really good at math, so you
could find out or figure out that

t∑
n=0

nβn = β(1 − βt − tβt + tβt+1)
(1 − β)2

= β

(1 − β)2 + βt+1 1 + t − tβ

(1 − β)2

so
ut+1 = (A + Bt)

( 1
1 − β

)
− B

β

(1 − β)2 + βt+1
(

u0 − A + Bt

1 − β
− 1 + t − tβ

(1 − β)2

)
or shifting indexes and regrouping,

ut = B

1 − β
t + A

1 − β
− B

(1 − β)2 + βt+1
(

u0 − A + Bt

1 − β
− 1 + t − tβ

(1 − β)2

)
.

Since tβt → 0 as t → ∞, we see that ut converges pointwise to the line

B

1 − β
t + A

1 − β
− B

(1 − β)2

as t → ∞. So exponentiating,

kt →
((1 − α)(1 − β)A0

1 + η
(1 + ζ)−1/(1−β)

)1/(1−β) (
(1 + ζ)1/(1−β)

)t

= k∗
0

(
(1 + ζ)1/(1−β)

)t
,

where k∗
0 is given by (8). This certainly explains why kt+1/kt → (1 + ζ)1/(1−β).
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