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1 Basic formulation and notation

This describes the basic OG model used by Auerbach and Kotlikoff [1].

1. There are N members of each generation, and they are identical—the representative
agent hypothesis. Each works when young, saves, and lives off his or her savings when
old.

2. At the beginning of period ¢, there is a capital stock Ky, which is owned by the older
generation (generation ¢ — 1), that is used with an amount of labor L; supplied by the
young of period t to produce and additional increment Y; of good by the end of the period.
This means that at the end of period ¢ the total amount available for consumption and
investment is Y; + K;.

3. Workers of generation ¢t work 1 period at real wage wy. They save an amount asy1, which
earns the real rate of return ry; 1.

4. National output Y is produced according to the production function
Vi = F(K, Lt)

which exhibits constant returns to scale. Because of constant returns to scale, the economy
acts as if it is maximizing the aggregate real profit

F(K,, L) —wLy — p Ky,

where p; is the rental rate of capital, that is, what must be paid to the owners of capital.

Also because of constant returns to scale, the marginal product of capital and of labor,
and the output per worker, depend only the capital/labor ratio

Ky
ke = —.
t I,
Indeed v KL
t t t
—=F|—=, =] =F(k,1) = f(k
= F (5T = Flk 1) = )

where the last equality is taken as the definition of f.
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Also from f(K/L) = F(K/L,1), fixing L and differentiating with respect to K implies

J'(/L) _ DyF(K/L,1)
L L ’

so  f'(k)=DiF(k,1) = DF(K, L),

where the last equality follows from Euler’s Theorem (partial derivatives are homogeneous
of degree zero).

5. Workers are fully employed,
L; = N.

6. Wages and interest rates in each period adjust to equate the supply and demand of capital
and labor.
2 Consumer/workers
Consumer/workers have a utility function for ranking lifetime consumption plans,
u(cy, co),

where ¢, is consumption when young, and ¢, is consumption when old. Workers earn wage
income w, when young and w, when old. Thus their budget constraint is

cy = wy — a, and Co = wo+ (14 17)a,
where a is their saving and r is the real rate of interest. Solving the second constraint for
a and substituting into the first gives the equivalent single lifetime budget constraint:

Co Wo

T s

Cy +
or
present value of consumption = present value of income.

Consumer /workers maximize their utility subject to the budget constraint. That is, they
choose ¢, and ¢, to

o . Co W,
maximize u(cy, ¢,) subject to ¢, + —— = wy )
CyCo I+r 1+7r

An equivalent, and perhaps more useful reformulation is that they choose their saving a to
maximize u(wy — a,w, + (14 r)a).
a

The solution to this problem clearly depends on wy, w,, and the real interest rate r. The
solution is known as the saving function, and we shall denote it by

(l(’l”; wya wO):

so with time subscripts
a1 = a(re1; Wy, Wey1)-
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2.1 Cobb—Douglas case
We now solve the consumer/worker’s problem for the case

_ o l-a
u(cya CO) - Cy Co ’
and

w, = 0.

The Lagrangean for this problem is

Co

17
c?co Y+ AMwy — ¢y — T+r 7n).
The first order conditions for a maximum at (¢, ¢y, a) are that its partial derivatives are zero,

or

a—1, 11—«
acy® e, —A=0
1

A=0.
1+7r

(1 —a)cy®co ™ —

Combined with the budget constraint, this implies

Cy = aquy
a=(1-oa)w,

co=(14+7)(1—a)w,.

In terms of the time subscript convention, the key result is the saving function satisfies

arr1 = a(rer;we) = (1 — a)wy. (1)

Note that for this utility function, the individual saving function is independent of the real
interest rate! This will simplify the analysis of the model.

3 The production sector
As remarked above, the production sector acts as if it maximizes
F(K,L)—wL — pK.

The first order conditions are that the partial derivatives of the profit with respect to K and
L are zero. Due to constant returns to scale, the maximum profit is zero, and the profit
maximizing output is indeterminate. However, the capital/labor ratio is determinate.
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3.1 The Cobb—Douglas case
The solution to the problem when

F(K,L)= AK°L'~F
is gotten by solving the first order conditions,

BAKP=ILYP — p =0

(1-B)AKPL™? —w=0,
or in terms of the optimal capital/labor ratio k,
BAKP~! = p
(1—B)AK® = w.

These first order conditions allows to solve for k as

__ B w
S 1-Bp

So let us write the capital demand per worker function as

kt = k(pt,wt) = 1_661;;: (2)

4 Some accounting

Now we get to the relation between p;, the rental rate of capital at time ¢, and 7, the real rate
of interest between periods t — 1 and ¢; and the relation between a, the per capita saving by
the young of generation ¢ — 1, and k;, the capital/labor ratio in period ¢. Here it is:

a = ki (3)

Tt = pt-

That is, the capital stock per worker at time t, is exactly the savings per worker of time ¢ — 1,
and the rental rate of capital is the real rate of interest.
Recall that by Euler’s Theorem, for any values of K and L, we have

F(K,L)=DF(K,L)K + DyF (K, L)L,
and for the profit maximizing values K* and L* (which depend on p and w) we have

D\F(K*,L*)=p andDo F'(K*, L") = w.
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Thus
Y*=F(K*,L*) = pK* +wL".

Now wL* is the aggregate income of the young, and pK™* is the capital rental income of the old.
But the old also own the capital stock K*, which they must either sell to the young at the end
of the period, after they have collected their rental fee, or consume it themselves. How much
can they get for it? Well, it is K™* units of output, which is worth exactly K* units of output.

Thus on the income side, the young receive wL; and the old receive pK; in rental income
and K from the sale of their capital. Thus total income is

wL* + pK*+ K*=Y"*+ K*.

But the real rate of interest r; between periods ¢t — 1 and ¢ is computed as follows. The young
at time ¢ — 1 save a real amount Naj, for which they pay Na; units output, which they sell a
period later for Na; = K} and also receive p, K} in rental income, so they get back (1 + p:) K7,
which by the definition of real rate of interest is the return on their investment (1 + ) K.
Thus

Tt = Pt.

From now on, I will use r instead of p.

5 Equilibrium values of w and r

From (1) the saving of the workers, which is the supply of capital, is given by
agy1 = a(rerwy) = (1 — a)wy,

and from (2), the demand for capital is given by

B w1
1—/8 Tt+1 ’

In equilibrium of supply and demand for capital, we must have a sequence of equilibrium wage
and real interest rates

kty1 = K(reqr, wep1) =

<(7"2k7 w;f)>t=0,1,...
and
a(riy;wy) = k(rip, wipy)

or

(1 . a)w* ﬂ wt+1

= — for all ¢. 4
! 1—0riy @

This is not very easy to interpret, but if we express the results directly in terms of the sequence
(k;) we have the difference equation

K = (1— 0)(1 - B) AR, (5)
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6 The steady states

This difference equation has two steady states. A steady state is a value k such that the
solution kf = k for all ¢ solves (5). One (rather uninteresting steady state) is given by

ki =0 for all ¢.

The other steady state is given by
Ki=k=[1—a)1—BA™F  forallt.

This steady state has the property that for any initial condition kj > 0 the solution converges
relatively rapidly to k. (I am rapidly running out of ornaments for my letters.)
To see this, consult Figure 1.

7 Growth

Suppose now that the coefficient of total factor productivity A is growing over time at the rate
¢, that is
Appr = (1 + Q) Ay,

and that population is growing at the rate n. That is,
N1 = (14 1) Ny
The per capita production function now depends on the time period:
ye = (1+ Q)T Aok}

Therefore, since the real wage is the marginal product labor, and the rate of return on capital
is the marginal product of capital we have

wy = (1= B)(1+ ()" Aok
re=B(L+¢) Aok .
The budgets of consumers are straightforward:
Cyt + Q41 = Wi
Cot+1 = (1 +7r41)at41,

so the lifetime budget constraint is

Cyt + Cot+1 = Wt.

1+ 7441

This gives the demand function
Cyt = QWy
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Figure 1. Convergence to the steady-state capital-labor ratio.
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so per capita saving a;41 is given by
ai4+1 = (1 — oz)wt.

A significant difference is that since the population Nytq at time ¢ + 1 is (1 4+ 1) N¢. Therefore
the capital/labor ratio ky11 at time ¢ + 1 satisfies the transition equation

at+1
147
1—
- 1 +a7)7Wt (6)
_ (=) =A(+O 0 s
— T p

kiy1 =

Figure 2 shows some sample dynamics. It is clear that no steady state capital/labor ratio exists,
but it may not be immediately obvious that

Bl (14 109, ()

k’t t—o00

Before proving (%), let me make a couple of observations. The interesting thing about this
limit is what it does not depend on. The limiting rate of growth in k; is independent of the
initial capital/labor ratio, the rate of growth of population n, and also independent of the saving
rate 1 — a! It depends only on the technological parameters 3, the share of capital, and , the
rate of productivity growth. Note that the limiting growth rate is increasing in both ¢ and g.

The other thing to note is that per capita income and the real wage also grow at the same
rate asymptotically:

yer1 (L4 Q) Aok) 1 ki)’ £
Yo (14 C)tAk? = +C)( )

S (141 +0TF = (14077,

we (1= B)(1+ )t Aok

The rate of the return on capital, however, stabilizes:

_ B 1
wes _ QZPUOMl_(y (e} 1 g4 - ae o,

e

v _ B+ Q) Aokt ki) 7 =5
e B(L+ )tk 1+4) ( )

S (1+00+0TF =1.
ky

To prove (x), from (6) we have

(1-a)(d =)L+ A
1+n
(1 —a)(1-B)(1+¢) Ay
147

kip1 = k)

ke = kffla
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(1-)(1-B(1-0° AgkP /(1+n)
8 [
kg
6 [
(1-0? AgkP j(1+1)
/
ks 4 1 s
(1-0)(1-B(A-0 AgkP /(1+n)
//
Ko
1-a)1-B)1-0)° AgkP /(1+n)
ky 2

Figure 2. Sample time path of k;. Note that in this case it is not monotonic.
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10

which implies

to get the difference equation
ug = In(1 4+ ¢) + Pug—1.

We can solve this by iterating:

ug = In(1 4 ¢) + Pur—1
=In(1+¢) + B(In(l +¢) + Puz-1)
= (14 8)In(1 +¢) + fur
= (1+8)In(1+¢) + B2(In(1 +¢) + Bug_s9)
= (148481 + )+ Bu—s

t
= <Z 6”) In(1+¢) + 5" ug
n=0
In(1+¢)
t—o00 1-p ’
Thus L (1 + ¢)
+
In ( 1) - 0
so exponentiating,
1

1
-8
B o LTOTT

Note that the special value k(j defined by
(1—a)(1=B)1+¢)%4

1 VAP pr — oy = kP
( +C) 0 1 1+77 0

or

)

. ((1—a)(1—B)A _yaep) P
Fo = ( 141 (1+¢) )

then for each ¢ we have
1

ko= ((1+077) K,
SO

M _ 4o,
i

That is, each period grows at the limiting rate.



KC Border Growth in a Cobb—Douglas Overlapping Generations Model 11

Figure 3 shows how quickly the growth ratios k;.y1/k; converge for different starting values
ko. The parameters are « = .8, § = .3, ( = 0.348 (which corresponds to an annual rate
of .75% for a 40-year period), n = 0.489 (which corresponds to an annual rate of 1% for a
40-year period), Ap = 1, and initial capital/labor ratios of kg = 0.01855 for the red dots,
ko = 10 for the green dots, and ky = .001 for the blue dots. For these values, the limiting
ratio is (14 ¢)/(1=#) = 1.53261. More interesting, (7) also implies that the capital/labor ratios
themselves converge, as is shown in Figure 4.

ki /ki 1
12+ PY

10}

8+

Figure 3. Convergence of k11 /k; for different initial values ky.
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Figure 4. Convergence of capital/labor ratios for different initial values k.

However, do not think that saving rates and population growth rates do not matter. They
do not affect the asymptotic growth rate, but they do affect the levels of k;. Figure 5 shows
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the effect of decreasing the marginal propensity to consume («) from .8 (red) to .7 (blue). A
decrease in the population growth rate has an effect in the same direction.

Ln k

Figure 5. Effect of change in « on levels of k¢, but not growth rates.

As an aside, we can actually solve the difference equation for k;, or more easily, for In k;.
From (6), we have

Inkipr =[In(l —a) +InAg+1In(l — ) —In(1 +n)] + tIn(1+¢) + Blnky,

which has the form
Ug4+1 = A+ Bt+ 6Ut.
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Iterating as above, we get

ugr1 = A+ Bt + Suy
=A+Bt+8(A+B(t—1)+ Bui—1)
=AQ+B)+ B(t+ Bt —1)) + Bru—q
=A(1+B)+ Bt +p(t—1)) + B*(A+ B(t — 2) + Bus—_2)
— A1+ B+ 8H)+Bt+8t—1)+ 2t —2)) + Buso

t ¢
=AY p"+B (Z gt~ n)) + B g
n=0 n=0
t t ¢
=AY B"+BtY B"—BY np"+p"
n=0 n=0 n=0
1— Bt+1
1-p
Now, you probably don’t know this off the top of your head, but maybe you have a Chemical

Rubber Company Handbook or access to Mathematica, or are really good at math, so you
could find out or figure out that

t
:(A+Bt)< )—BZnﬁ"+ﬁt+1u0.
n=0

t
n B =B =t 4 tp
5 —
HZ:O n

L
- B 11+t —13
“a-pE "’ aopp

SO

A+Bt1+t—t6)

1
u1 = (A + Bi) <1—ﬁ> - B(l_BQ +87 (uo 1-5 (1-p)?

B)

or shifting indexes and regrouping,

B A B A+Bt 1+t—tp
Usr = t+ _ +/Bt+1 (uo o o )
1-p 1= (1-pp 1-5  (1-pp
Since t3' — 0 as t — oo, we see that u; converges pointwise to the line
B A B

18 t1- 5 a_pp

as t — 00. S0 exponentiating,

(I —a)(1-B)Ag _1/(1-8) Y=o 1/1-8)\!
kt—>( T 10 ) (=)

=k ((1+QVOPY,

where k is given by (8). This certainly explains why k1 /ks — (14 ¢)V/0=8),
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